一、人工智能在生活中应用的例子?
1. 电子邮件
一般来说,电子邮件供应商会使用人工智能算法来过滤垃圾邮件。考虑到全球77%的电子邮件都是垃圾邮件,这是非常有效的。谷歌表示,只有不到0.1%的垃圾邮件能够通过其人工智能过滤器。此外,电子邮件营销人员会利用人工智能追踪谁在何时打开邮件,以及他们对此如何回应。谷歌的AI工具会在云存储中读取文档,以便将最合适的材料呈现给用户。不过也有人因此质疑,通过阅读内容来瞄准广告的算法正在侵犯我们的隐私。
2. 手机
人工智能将智能手机上的许多功能都自动化了,从文本常用关联词到声控个人助理都是非常典型的例子。甚至于手机屏幕适应周遭光线的方式、电池寿命的优化等等也取决于人工智能。但也有一些批评人士担心这其中隐藏的风险。比如,无论你是否在打电话,声控助理都会学习并试图理解你说的所有话,不管目的是否是否善意,这就为监视监听创造了机会。
3.银行
在世界各地,网上银行极为普遍,基于人工智能的应用也屡见不鲜:客服接待、核验用户身份、打击欺诈、评估客人信誉并据此做出贷款决定等等。
人工智能可以监控交易,人工智能聊天机器人可以回答你与账户相关的问题。在SAS研究所最近的一项调查中,超过三分之二的银行表示,它们使用人工智能聊天机器人,近63%的银行表示,它们使用人工智能进行欺诈检测。
4. 医学
要拍x光片吗?很多人脑海中浮现的画面是:临床医生穿着白大褂进行研究诊断。但现在可以暂时想象一下另外一种可能:最初的分析由人工智能算法完成。事实上,AI非常擅长诊断问题。在一次用胸透检测癌症的实验中,一种名为DLAD的人工智能算法击败了18名医生中的17名。
此外,与银行业一样,聊天机器人也被部署在医疗保健领域,用于与患者沟通。比如预约,甚至作为医生的虚拟助手。
然而,批评人士表示人工智能诊断不能成为一个完全不透明的“黑匣子”。人工智能也有误判的可能。医生需要知道它们是如何工作的才能信任它们。此外这也涉及到隐私、数据保护和公平的问题。
5. 自动驾驶
人工智能是迈向自动驾驶汽车的核心。在新冠疫情影响下,自动驾驶技术开始加速发展,“无人接触”的快递物流服务就是其目标之一,中国现在就有一支“机器人出租车”车队在上海运营。但是自动驾驶的安全问题依然悬而未决。在过往发生的事故中,因自动驾驶汽车造成的伤亡至今令人心有余悸。
二、人工智能的发展和应用?
人工智能自上世纪50年代概念提出以来,历经符号主义、连接主义、知识工程等多个发展阶段,现正步入深度学习、大数据驱动及跨领域融合的新纪元。
其核心在于模拟、延伸和超越人类智能,涵盖机器学习、自然语言处理、计算机视觉等多个分支。
应用层面广泛渗透到各行各业,如自动驾驶、医疗诊断、金融服务、教育、智能制造等,显著提升效率,解决复杂问题,重塑业态模式。
同时,AI也引发伦理、就业、隐私等社会议题,呼唤科技与法规同步发展,确保人工智能造福人类社会。
三、人工智能在现实生活中有哪些有趣的应用?
自然语言处理的一个主要应用方面就是外文翻译。生活中遇到外文文章,大家想到的第一件就是寻找翻译网页或者APP,然而每次机器翻译出来的结果,基本上都是不符合语言逻辑的,需要我们再次对句子进项二次加工排列组合。至于专业领域的翻译,如法律、医疗领域,机器翻译根本就是不可行的。面对这一困境,自然语言处理正在努力打通翻译的壁垒,只要提供海量的数据,机器就能自己学习任何语言。机器从0开始进入一个领域(零成本进入)大概2周时间。所以,进入哪个领域都能高度垂直的做下去。比如,法律类专业文章翻译,优质法律文章的总量是有限的,让机器学习一遍这些文章,就可以保证翻译95%的流畅度,而且能做到实时同步。虚拟个人助理是指使用者通过声控、文字输入的方式,来完成一些日常生活的小事。大部分的虚拟个人助理都可以做到搜集简单的生活信息,并在观看有关评论的同时,帮你优化信息,智能决策。同时部分虚拟个人助理还可以直接播放音乐的智能音响或者收取电子邮件,这些都是虚拟个人助理的变化形式之一。虚拟个人助理应用在我们生活中的方方面面,音响、车载、智能家居、智能车载,智能客服多个方面。一般来说,听到语音指令就可以完成服务的,基本上都是虚拟个人助理智能病例处理自然语言处理还可以将积压的病例自动批量转化为结构化数据库,机器学习和自然语言处理技术能自动抓取病历中的临床变量,生成标准化的数据库。随后变量抽提、思路生成到论文图表导出的全过程辅助智能算法能挖掘变量相关性,激发论文思路,同 时提供针对临床科研的专业统计分析支持。其水平相当于受过8 年临床医学教育的医学研究生,这样下来同样同读一篇50页的病历,抓取和理解其中的所有临床信息速度比医生平均快2700倍,大大地提高了医院的办公效率,求医难这个问题将得到很多的缓解。人工智能在生活中的有趣应用,来帮助大家更好地理解人工智能,尽享科技带给我们的便捷生活。
四、人工智能的应用?
1. 无人驾驶汽车
无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶控制器来实现无人驾驶。无人驾驶中涉及的技术包含多个方面,例如计算机视觉、自动控制技术等。
美国、英国、德国等发达国家从20世纪70年代开始就投入到无人驾驶汽车的研究中,中国从20世纪80年代起也开始了无人驾驶汽车的研究。
2005年,一辆名为Stanley的无人驾驶汽车以平均40km/h的速度跑完了美国莫哈维沙漠中的野外地形赛道,用时6小时53分58秒,完成了约282千米的驾驶里程。
Stanley是由一辆大众途锐汽车经过改装而来的,由大众汽车技术研究部、大众汽车集团下属的电子研究工作实验室及斯坦福大学一起合作完成,其外部装有摄像头、雷达、激光测距仪等装置来感应周边环境,内部装有自动驾驶控制系统来完成指挥、导航、制动和加速等操作。
2006年,卡内基梅隆大学又研发了无人驾驶汽车Boss,Boss能够按照交通规则安全地驾驶通过附近有空军基地的街道,并且会避让其他车辆和行人。
近年来,伴随着人工智能浪潮的兴起,无人驾驶成为人们热议的话题,国内外许多公司都纷纷投入到自动驾驶和无人驾驶的研究中。例如,Google的Google X实验室正在积极研发无人驾驶汽车Google Driverless Car,百度也已启动了“百度无人驾驶汽车”研发计划,其自主研发的无人驾驶汽车Apollo还曾亮相2018年央视春晚。
但是最近两年,发现无人驾驶的复杂程度远超几年前所预期的,要真正实现商业化还有很长的路要走。
2. 人脸识别
人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。
人脸识别系统的研究始于20世纪60年代,之后,随着计算机技术和光学成像技术的发展,人脸识别技术水平在20世纪80年代得到不断提高。在20世纪90年代后期,人脸识别技术进入初级应用阶段。目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。
有一个关于人脸识别技术应用的有趣案例:张学友获封“逃犯克星”,因为警方利用人脸识别技术在其演唱会上多次抓到了在逃人员。
2018年4月7日,张学友南昌演唱会开始后,看台上一名粉丝便被警方带离现场。实际上,他是一名逃犯,安保人员通过人像识别系统锁定了在看台上的他;
2018年5月20日,张学友嘉兴演唱会上,犯罪嫌疑人于某在通过安检门时被人脸识别系统识别出是逃犯,随后被警方抓获。随着人脸识别技术的进一步成熟和社会认同度的提高,其将应用在更多领域,给人们的生活带来更多改变。
3. 机器翻译
机器翻译是计算语言学的一个分支,是利用计算机将一种自然语言转换为另一种自然语言的过程。机器翻译用到的技术主要是神经机器翻译技术(Neural Machine Translation,NMT),该技术当前在很多语言上的表现已经超过人类。
随着经济全球化进程的加快及互联网的迅速发展,机器翻译技术在促进政治、经济、文化交流等方面的价值凸显,也给人们的生活带来了许多便利。例如我们在阅读英文文献时,可以方便地通过有道翻译、Google翻译等网站将英文转换为中文,免去了查字典的麻烦,提高了学习和工作的效率。
4. 声纹识别
生物特征识别技术包括很多种,除了人脸识别,目前用得比较多的有声纹识别。声纹识别是一种生物鉴权技术,也称为说话人识别,包括说话人辨认和说话人确认。
声纹识别的工作过程为,系统采集说话人的声纹信息并将其录入数据库,当说话人再次说话时,系统会采集这段声纹信息并自动与数据库中已有的声纹信息做对比,从而识别出说话人的身份。
相比于传统的身份识别方法(如钥匙、证件),声纹识别具有抗遗忘、可远程的鉴权特点,在现有算法优化和随机密码的技术手段下,声纹也能有效防录音、防合成,因此安全性高、响应迅速且识别精准。
同时,相较于人脸识别、虹膜识别等生物特征识别技术,声纹识别技术具有可通过电话信道、网络信道等方式采集用户的声纹特征的特点,因此其在远程身份确认上极具优势。
目前,声纹识别技术有声纹核身、声纹锁和黑名单声纹库等多项应用案例,可广泛应用于金融、安防、智能家居等领域,落地场景丰富。
5. 智能客服机器人
智能客服机器人是一种利用机器模拟人类行为的人工智能实体形态,它能够实现语音识别和自然语义理解,具有业务推理、话术应答等能力。
当用户访问网站并发出会话时,智能客服机器人会根据系统获取的访客地址、IP和访问路径等,快速分析用户意图,回复用户的真实需求。同时,智能客服机器人拥有海量的行业背景知识库,能对用户咨询的常规问题进行标准回复,提高应答准确率。
智能客服机器人广泛应用于商业服务与营销场景,为客户解决问题、提供决策依据。同时,智能客服机器人在应答过程中,可以结合丰富的对话语料进行自适应训练,因此,其在应答话术上将变得越来越精确。
随着智能客服机器人的垂直发展,它已经可以深入解决很多企业的细分场景下的问题。比如电商企业面临的售前咨询问题,对大多数电商企业来说,用户所咨询的售前问题普遍围绕价格、优惠、货品来源渠道等主题,传统的人工客服每天都会对这几类重复性的问题进行回答,导致无法及时为存在更多复杂问题的客户群体提供服务。
而智能客服机器人可以针对用户的各类简单、重复性高的问题进行解答,还能为用户提供全天候的咨询应答、解决问题的服务,它的广泛应用也大大降低了企业的人工客服成本。
6. 智能外呼机器人
智能外呼机器人是人工智能在语音识别方面的典型应用,它能够自动发起电话外呼,以语音合成的自然人声形式,主动向用户群体介绍产品。
在外呼期间,它可以利用语音识别和自然语言处理技术获取客户意图,而后采用针对性话术与用户进行多轮交互会话,最后对用户进行目标分类,并自动记录每通电话的关键点,以成功完成外呼工作。
从2018年年初开始,智能外呼机器人呈现出喷井式兴起状态,它能够在互动过程中不带有情绪波动,并且自动完成应答、分类、记录和追踪,助力企业完成一些烦琐、重复和耗时的操作,从而解放人工,减少大量的人力成本和重复劳动力,让员工着力于目标客群,进而创造更高的商业价值。当然智能外呼机器人也带来了另一面,即会对用户造成频繁的打扰。
基于维护用户的合法权益,促进语音呼叫服务端健康发展,2020年8月31日国家工信部下发了《通信短信息和语音呼叫服务管理规定(征求意见稿)》,意味着未来的外呼服务,无论人工还是人工智能,都需要持证上岗,而且还要在监管的监视下进行,这也对智能外呼机器人的用户体验和服务质量提出了更高的要求。
7. 智能音箱
智能音箱是语音识别、自然语言处理等人工智能技术的电子产品类应用与载体,随着智能音箱的迅猛发展,其也被视为智能家居的未来入口。究其本质,智能音箱就是能完成对话环节的拥有语音交互能力的机器。通过与它直接对话,家庭消费者能够完成自助点歌、控制家居设备和唤起生活服务等操作。
支撑智能音箱交互功能的前置基础主要包括将人声转换成文本的自动语音识别(Automatic Speech Recognition,ASR)技术,对文字进行词性、句法、语义等分析的自然语言处理(Natural Language Processing,NLP)技术,以及将文字转换成自然语音流的语音合成技术(Text To Speech,TTS)技术。
在人工智能技术的加持下,智能音箱也逐渐以更自然的语音交互方式创造出更多家庭场景下的应用。
8. 个性化推荐
个性化推荐是一种基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,如商品推荐、新闻推荐等。
个性化推荐既可以为用户快速定位需求产品,弱化用户被动消费意识,提升用户兴致和留存黏性,又可以帮助商家快速引流,找准用户群体与定位,做好产品营销。
个性化推荐系统广泛存在于各类网站和App中,本质上,它会根据用户的浏览信息、用户基本信息和对物品或内容的偏好程度等多因素进行考量,依托推荐引擎算法进行指标分类,将与用户目标因素一致的信息内容进行聚类,经过协同过滤算法,实现精确的个性化推荐。
9. 医学图像处理
医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像。
传统的医学影像诊断,主要通过观察二维切片图去发现病变体,这往往需要依靠医生的经验来判断。而利用计算机图像处理技术,可以对医学影像进行图像分割、特征提取、定量分析和对比分析等工作,进而完成病灶识别与标注,针对肿瘤放疗环节的影像的靶区自动勾画,以及手术环节的三维影像重建。
该应用可以辅助医生对病变体及其他目标区域进行定性甚至定量分析,从而大大提高医疗诊断的准确性和可靠性。另外,医学图像处理在医疗教学、手术规划、手术仿真、各类医学研究、医学二维影像重建中也起到重要的辅助作用。
10. 图像搜索
图像搜索是近几年用户需求日益旺盛的信息检索类应用,分为基于文本的和基于内容的两类搜索方式。传统的图像搜索只识别图像本身的颜色、纹理等要素,基于深度学习的图像搜索还会计入人脸、姿态、地理位置和字符等语义特征,针对海量数据进行多维度的分析与匹配。
该技术的应用与发展,不仅是为了满足当下用户利用图像匹配搜索以顺利查找到相同或相似目标物的需求,更是为了通过分析用户的需求与行为,如搜索同款、相似物比对等,确保企业的产品迭代和服务升级在后续工作中更加聚焦。
五、人工智能用在工作上的应用?
AI赋予机器人新活力
传统的工业机器人仅是以机器人代替部分繁琐的人工劳动,成为人类体力的延伸,但机器人的智能程度还不够,无法完成一些比较精细的工作。但随着科学技术的发展和工业生产的需要,人们也开始研究如何让机器人去代替部分脑力劳动,使其具有更高的智慧与能力,而AI技术的发展则弥补了这一短板。
AI技术的加入,使得工业机器人能以与人类智能相似的方式做出反应,赋予了机器人新的活力,让它不仅能代替人类大部分的体力劳动,也可以在程序设定的基础上代替部分的脑力劳动,提高生产效率,降低工厂生产成本。
人工智能AI在工业中的应用
01 智能缺陷检测
由于人眼无法看清快速移动的目标,对微小目标分辨能力弱,而且人眼疲劳后漏检率会提高,这些都使得人工检测费时费力。而智能缺陷检测机器人则克服了这些困难,高速工业相机能够在动态检测的情况下极大降低误报率,还可根据产品检测需求调整检测精度,提高检测效率。同时可配合自动化生产线,实现自动检测、自动处理,降低次品率,减少人工成本,使得生产效率显著提升。
主要应用场景
02 智能识别分拣
对于工厂来说,分拣速度慢意味着生产出的产品会在产线上积压,造成生产线流转不顺畅,拉低生产效率。目前人工分拣速度慢,尤其是体积小、颜色形状多的产品更是分拣难度大,很容易造成分拣失误,但如果使用智能分拣机器人则可以大大提高分拣速度。
智能分拣机器人可以通过摄像头对分拣物品进行识别,再通过分析得出该物品应放置的区域,最后通过机械臂或产线配合将产品送至相应的位置。该机器人的在线识别速度一般都高于生产速度,分拣失误率低,不易造成产品在产线上积压。
主要应用场景
03 智能尺寸检测
传统的产品尺寸检测由于人员使用量具熟练程度的不同,量具使用不熟练或是人员疲劳会造成检测速度变慢,延缓生产进度,而且人工测量误差较大。但智能尺寸检测机器人可以24小时持续检测,检测速度快,测量误差小。
04 智能视觉引导
视觉机器人想要成功接收各项指令并完成相应的动作,也像人一样需要大脑的调配。智能装备研发的视觉引导系统就是这样一个“大脑”,它通过自主软件控制系统来下达指令,工业相机进行目标产品信息捕捉,再通过多轴机械臂进行操作,整个过程流畅自然。
案例分享
01 管桩自动领域:管桩自动装配机器人
该设备用于水泥管桩行业的头尾板自动装配
采用视觉获取笼筋墩头的空间角度位置,配合四轴矫正专机完成墩头的自动撑开,最后通过机械臂实现头尾板的装配
02 检测领域:检测中心检测机器人
检测系统由六轴机器人、自动上料装置、自动扫码装置、测径仪、测宽仪、三点测弯机构、拉力机、安全防护系统等组成。
机器人系统实现样品检测自动化、无人化、数据自动上传与处理功能,提了检测准确性、真实性,降低人工成本、提高检测效率。
六、ai的具体应用?
许多人应该接触过电影中的面部识别技术,这是人工智能最广为人知的应用之一。华为云使用这项技术帮助深圳警方成功找到了嫌疑犯并找回了一个丢失的孩子。事实上,除了面部识别,人工智能在恢复图像方面也发挥着重要作用。
随着数字成像智能的不断提高,扭曲或碎片化的图像可以转化制成清晰的母版。它是如何工作的?人工智能成像技术可以恢复被雨水浸泡或被污渍污染的图像,重像素化或低分辨率图像,以及被某些元素覆盖的图像。除了图像,这项技术还可以用来恢复视频。
这项技术不仅是一种先进的图片编辑工具,而且还能产生像人一样能分析周围环境的人工智能机器。例如,数字成像技术可以帮助自动驾驶车辆在恶劣的道路条件和恶劣的天气条件下行驶,大大提高驾驶安全性。
此外,人工智能在许多行业从事单调乏味的非技术性工作,以帮助人类提高生产效率。例如,建筑业有一项常规工作:计算钢筋,这非常耗时。当钢筋运输车进入在施工现场时,验收直杆一般都是人工清点,一车钢筋大约需要半个小时。
当钢筋进入现场称重时,人工智能可以快速识别钢筋的类型、数量、厚度等信息。建筑工人可以从中解脱出来,从事更有技能的工作。除了节省时间,人工智能还大大提高了建筑行业的效率。
金融服务:人工智能技术最有可能登陆的行业是金融业。人工智能可以自动上传表格、检查错误等。将事务处理周期缩短80%,将错误减少50%。
法律职业:人工智能可以成为法官的助手,帮助他们快速准确地处理法律程序。因为法律文件通常具有共同的结构特征,包括当事人、法律条款的适用、法庭上的交叉质证、法院意见、最终判决等。公司一直在研究使用自然语言处理技术来分析法律条款和法院判决,并使用工具来更快、更准确地分析数据,这有助于法官查阅和识别预警报告中的关键文件,以进行尽职调查。人工智能将减少大量的现场工作和高度集中注意力的工作,让法官能够专注于最重要的文件。
制造业:高精度组件要求超出人眼的精度。工业机器人的精度主要取决于其关节中的齿轮箱。换句话说,机器人手臂越大,其精确度越低。随着软件的发展,电子元件变得越来越小,进一步提高了机器人装配的精度。机器人每年为全球生产率贡献0.8至1.4个百分点,工业维护成本降低25%。到2025年,工业机器人市场预计将增长175%,达到338亿美元。
在煤炭领域,人工智能也能发挥巨大作用。例如华为云,煤科院和他的合作伙伴共同建造的煤矿大脑就是一个很好的应用
七、人工智能在生活中的应用都有哪些?
日常生活中常见的人工智能应用。
1. 电子邮件
一般来说,电子邮件供应商会使用人工智能算法来过滤垃圾邮件。考虑到全球77%的电子邮件都是垃圾邮件,这是非常有效的。谷歌表示,只有不到0.1%的垃圾邮件能够通过其人工智能过滤器。此外,电子邮件营销人员会利用人工智能追踪谁在何时打开邮件,以及他们对此如何回应。谷歌的AI工具会在云存储中读取文档,以便将最合适的材料呈现给用户。不过也有人因此质疑,通过阅读内容来瞄准广告的算法正在侵犯我们的隐私。
2. 手机
人工智能将智能手机上的许多功能都自动化了,从文本常用关联词到声控个人助理都是非常典型的例子。甚至于手机屏幕适应周遭光线的方式、电池寿命的优化等等也取决于人工智能。但也有一些批评人士担心这其中隐藏的风险。比如,无论你是否在打电话,声控助理都会学习并试图理解你说的所有话,不管目的是否是否善意,这就为监视监听创造了机会。
3.银行
在世界各地,网上银行极为普遍,基于人工智能的应用也屡见不鲜:客服接待、核验用户身份、打击欺诈、评估客人信誉并据此做出贷款决定等等。
人工智能可以监控交易,人工智能聊天机器人可以回答你与账户相关的问题。在SAS研究所最近的一项调查中,超过三分之二的银行表示,它们使用人工智能聊天机器人,近63%的银行表示,它们使用人工智能进行欺诈检测。
4. 医学
要拍x光片吗?很多人脑海中浮现的画面是:临床医生穿着白大褂进行研究诊断。但现在可以暂时想象一下另外一种可能:最初的分析由人工智能算法完成。事实上,AI非常擅长诊断问题。在一次用胸透检测癌症的实验中,一种名为DLAD的人工智能算法击败了18名医生中的17名。
此外,与银行业一样,聊天机器人也被部署在医疗保健领域,用于与患者沟通。比如预约,甚至作为医生的虚拟助手。
然而,批评人士表示人工智能诊断不能成为一个完全不透明的“黑匣子”。人工智能也有误判的可能。医生需要知道它们是如何工作的才能信任它们。此外这也涉及到隐私、数据保护和公平的问题。
5. 自动驾驶
人工智能是迈向自动驾驶汽车的核心。在新冠疫情影响下,自动驾驶技术开始加速发展,“无人接触”的快递物流服务就是其目标之一,中国现在就有一支“机器人出租车”车队在上海运营。但是自动驾驶的安全问题依然悬而未决。在过往发生的事故中,因自动驾驶汽车造成的伤亡至今令人心有余悸。另外关于事故的追责和伦理问题,目前也存在争议。
6. 火车和飞机
传统的轨道胖的铁路信号正在被由AI驱动的驾驶室信号系统所取代,这种系统可以自动控制列车。欧洲列车控制系统允许更多列车使用同一段轨道,同时保持列车之间的安全距离。
迄今为止,人工智能在飞机控制方面的应用仅限于无人机,尽管使用人工智能导航的“飞的”(空中出租车)已经进行了飞行测试。专家表示,当前,相比AI,人类还是更擅长驾驶飞机,但人工智能被广泛应用于航线规划、时刻表优化和预订管理。
7. 拼车和旅行应用程序
拼车应用利用人工智能来解决司机和乘客之间的需求冲突。后者想要立即乘车,而司机看重的是他们可以选择工作时间的自由。学习了这些模式的交互方式后,人工智能可以协调双方需求,实现双赢。
旅游应用程序使用人工智能进行个性化推荐,因为算法会了解用户的偏好。酒店搜索引擎Trivago甚至购买了一个人工智能平台,该平台可以根据用户的社交媒体点赞倾向来定制搜索结果。
8. 社交媒体
在使用社交媒体时,你可能会常常惊讶于它对你的“了如指掌”。当然,这都取决于人工智能。Facebook的机器学习技术可以识别发布在该平台上的照片中的你的脸,以及日常物品,从而分析你的兴趣和偏好,进而推送内容和广告。
使用领英的求职者也可以从人工智能中受益,人工智能会分析他们的个人资料以及与其他用户的互动情况,来提供工作建议。该平台称,人工智能“与我们所做的一切都交织在一起”。
9. 制造业
意外故障是每个生产经理的噩梦。因此,人工智能在监控机器性能方面发挥着关键作用,使维护能够按计划进行,而不是被动进行。专家估计,这将使机器的离线时间减少75%,维修费用减少近三分之一。人工智能还可以预测产品需求的变化,优化生产能力。目前全球约9%的工厂使用人工智能,但德勤表示,93%的公司认为人工智能将是推动该行业增长和创新的关键技术。
10. 调节能源供给
风能和太阳能是环保能源,但如果没有风,天空多云会发生什么呢?人工智能技术可以平衡供需,控制热水器等设备,确保它们只在需求低而供应充足时才取电。
八、人工智能在社会各领域应用?
人工智能主要应用领域包括:1、农业方面。2、通信方面。3、医疗方面。4、社会治安方面。5、交通领域方面。6、服务业方面。7、金融行业方面。8、大数据处理方面。
1、农业
农业中已经用到很多的AI技术,无人机喷撒农药,除草,农作物状态实时监控,物料采购,数据收集,灌溉,收获,销售等。通过应用人工智能设备终端等,大大提高了农牧业的产量,大大减少了许多人工成本和时间成本。
2、通信
智能外呼系统,客户数据处理(订单管理系统),通信故障排除,病毒拦截(360等),骚扰信息拦截等
3、医疗
利用最先进的物联网技术,实现患者与医务人员、医疗机构、医疗设备之间的互动,逐步达到信息化。例:健康监测(智能穿戴设备)、自动提示用药时间、服用禁忌、剩余药量等的智能服药系统。
4、社会治安
安防监控(数据实时联网,公安系统可以实时进行数据调查分析)、电信诈骗数据锁定、犯罪分子抓捕、消防抢险领域(灭火、人员救助、特殊区域作业)等
5、交通领域
航线规划、无人驾驶汽车、超速、行车不规范等行为整治
6、服务业
餐饮行业(点餐、传菜,回收餐具,清洗)等,订票系统(酒店、车票、机票等)的查询、预定、修改、提醒等
7、金融行业
股票证券的大数据分析、行业走势分析、投资风险预估等
8、大数据处理
天气查询,地图导航,资料查询,信息推广(推荐引擎是基于用户的行为、属性(用户浏览行为产生的数据),通过算法分析和处理,主动发现用户当前或潜在需求,并主动推送信息给用户的浏览页面。),个人助理