石墨烯发展历史

数以科技 2025-03-05 15:31 机器人 161 次浏览

一、石墨烯发展历史

石墨烯发展历史

石墨烯自问世以来,一直是材料科学领域的明星物质,在各个领域展现出了卓越的应用前景。下面将简单介绍石墨烯的发展历史,以飨读者。 早期探索 ------ 早在20世纪初,科学家们就开始了对石墨烯的研究。他们发现,当石墨块被锯开或研磨时,会在断面上出现一层单层的碳原子平面薄膜,这就是石墨烯。这一发现启发了科学家们对石墨烯的研究热情。 然而,早期的石墨烯研究主要集中在物理和化学领域,主要关注石墨烯的物理性质和化学性质,如电导性、热导性、稳定性等。这一阶段的研究主要集中在实验室阶段,尚未形成产业化应用。 商业化应用探索 -------- 随着科技的不断进步,石墨烯的研究逐渐转向了产业化应用。这一阶段的研究主要集中在材料科学和纳米科技领域,主要关注石墨烯在电子器件、生物医学、能源等领域的应用。这一阶段的研究主要集中在学术机构和企业实验室,尚未大规模商业化应用。 近期发展 ---- 近年来,石墨烯的产业化应用取得了显著进展。许多企业和研究机构开始大力投入石墨烯的研究和开发,推动了石墨烯的制备技术和应用场景的不断拓展。石墨烯在电子器件、能源、生物医学等领域的应用逐渐成为热点话题。 目前,石墨烯已经成为新材料领域的重要代表之一,被广泛应用于各种领域,如电子器件、传感器、生物医学、能源等领域。未来,石墨烯的发展前景十分广阔,有望成为推动产业升级和科技创新的重要力量。

二、机器人技术国内外发展状况?

国际上机器人市场大概有80亿至100亿,其中工业机器人占的比重最大。2025年,整个机器人市场将达到500亿,服务机器人从原来的300多万台增加到1200多万台,特种机器人(如:排爆机器人、医疗机器人等)的呼声也越来越高。

美国和日本多年来引领国际机器人的发展方向,代表着国际上机器人领域的最高科技水平。目前,日本除了比较关注特种机器人和服务机器人以外,还注重中间件的研制。然而,近年来日本基本上在做模仿性的工作,突破性技术比较少。 而美国在机器人领域的技术开发方面,一直保持着世界领先地位。 再有,美国主要做高附加值的产业,比如军用机器人,目前世界销售的9000台军用机器人之中,有60%来自美国。比如:美国最近研制成功的Big Dog军用机器人,能负重100公斤,行进速度跟人相当,每小时达到五公里,还能适应各种地形,即使是在侧面受到冲击时也能保持很好的系统稳定性。

三、机器人的发展历史?

从工业革命开始之后的两百年时间里,人们就一直不断提高机器的设计理念和制造工艺。尤其是自20世纪中期以来,大规模生产的迫切需求推动了自动化技术的发展,进而衍生出三代机器人产品。第一代机器人是遥控操作的机器,工作方式是人通过遥控设备对机器进行指挥,而机器本身并不能独自控制运动。第二代机器人通过程序控制,可以使其自动重复完成某种方式的操作。第三代机器人被称为智能机器人。

第一代机器人的诞生源于发展核技术的需求。20世纪40年代,美国建立了原子能实验室,但实验室内部的核辐射环境对人体的伤害较大,迫切需要一些操作机械能代替人处理放射性物质。在这个需求的推动下,美国原子能委员会的阿尔贡研究所于1947年开发了遥控机械手,随后又在1948年开发了机械耦合的主从机械手。所谓主从机械手,即当操作人员控制主机械手做一连串动作时,从机械手可准确地模仿主机械手的动作。

1952年,美国帕森斯公司制造了一台由大型立式仿形铣床改装而成的三坐标数控铣床,这标志着数控机床的诞生。此后,科学家和工程师们对控制系统、伺服系统、减速器等数控机床关键零部件技术的深入研究,为机器人技术的发展奠定了坚实的基础。

然而这些机器人是遥控操作的机器,工作方式是人通过遥控设备对机器进行指挥,而机器人本身并不能独立控制运动。

凭借自动化技术和零部件技术的研究积累,第二代机器人登上了历史舞台。1954年,美国人乔治·沃尔德制造出世界第一台可编程的机械手,并注册了专利。按照预先设定好的程序,该机械手可以从事不同的工作,具有通用性和灵活性。

随后的1958年,被誉为“机器人之父”的美国人约瑟夫·恩格尔伯格创建了世界上第一家机器人公司——Unimation,正式把机器人向产业化方向推进。1962年,Unimation公司的第一台机器人产品Unimate问世。该机器人由液压驱动,并依靠计算机控制手臂执行相应的动作。同年,美国机床铸造公司也研制了Versatran机器人,其工作原理于Unimate相似。一般认为,Unimate和Versatran是世界上最早的工业机器人。

世界上最早的工业机器人——Unimate

机器人发展到第二代,依旧是通过程序被控制,可以自动重复完成某种方式的操作。

在机器人技术的研发过程中,人们尝试利用传感器提高机器人的可操作性,具备感知能力的第三代智能机器人渐成研发热点。如厄恩斯特的触觉传感机械手、托莫维奇和博尼的安装有压力传感器的“灵巧手”、麦肯锡的具备视觉传感器系统的机器人以及约翰·霍普斯金大学应用物理实验室研制出的Beast机器人等的成功尝试,第三代智能机器人的发展曙光渐显。

1968年,美国斯坦福国际研究所成功研制出移动式机器人Shakey,它是世界上第一台带有人工智能的机器人,能够自主进行感知、环境建模、行为规划等任务。该机器配有电视摄像机、三角法测距仪、碰撞传感器、驱动电动以及编码器等硬件设备,并由两台计算机通过无线通信系统控制。限于当时的计算水平,Shakey 需要相当大的机房支持其进行功能运算,同时规划行动也往往要耗时数小时。

世界上首台智能移动机器人—Shakey

即便Shakey笨重且效率低下,但它具备人工智能机器人所具备的特征,即利用各种传感器和测量器等来获取环境信息,然后基于智能技术进行识别、理解和推理,并做出规划决策,同时能够自主行动实现预定目标。于是,第三代智能机器人由此展开。

由上述机器人的发展历程我们可以看到,工业生产的内在需求以及传统工业方式亟待转变的趋势,都是推动机器人发展的核心力量。

四、机器人国内外发展状况观后感?

机器人在国内外的发展状况令人印象深刻。国内机器人产业快速崛起,成为全球领先的机器人制造和应用市场。中国政府的支持政策和投资,推动了机器人技术的创新和应用。同时,国外也取得了显著进展,特别是在日本、美国和欧洲。

机器人在制造业、医疗保健、农业和服务业等领域的应用越来越广泛。然而,机器人发展也带来了一些挑战,如人工智能的伦理问题和对人类就业的影响。

总体而言,机器人的发展为社会带来了巨大的潜力和机遇,但也需要我们谨慎应对相关问题。

五、机器人直立行走发展历史?

早期猿人阶段.大约生存在300万年到150万年前,已具备人类基本特点,能直立行走,制造简单的砾石工具.

六、六轴工业机器人发展历史?

六轴机器人的发展,经历了刚性自动线和柔性自动线的两个时代。就目前而言,在国内二者均有之。

刚性加工自动线的输送分为棘轮棘爪、摆杆、抬起步伐、机动滚道等形式。

随着加工中心机床的发展,由其组成的自动线逐步替代组合机床组成的自动线,它以适应小批量多品种的优点,得到市场的广泛认可,并称其为柔性加工自动线。

这种以加工中心机床组成的柔性加工自动线,就其输送装置或输送带依然为刚性,这类柔性自动线可谓是准柔性。

当今的柔性加工自动线又有了飞跃,输送形式以刚性加柔性(六轴机器人)并存,或纯柔性输送,即输送系统全部由桁架机器人组成,这是真正的柔性加工自动线,即主机柔性,输送系统也柔性。

如主机是高速加工中心配以六轴机器人输送,又称之为敏捷柔性加工自动线,是敏捷制造系统的重要组成部分。

自动线采用六轴机器人输送后,输送步距可根据机床的配置随意改变,自动线上的机床与机床之间的安装位置不再象刚性输送那样,按照输送步距或步距倍数的要求进行严格的安装,且输送速度也可根据生产节拍及输送的距离而改变。

而真正体现柔性输送的重要一面是,当被加工零件的产品改变后,输送部分不会不适应而全部更换,只要改变输送程序和机器人局部结构即可。

七、中国摄像机器人发展历史?

机器人视觉系统经历了三代的发展,第一代机器人视觉的功能一般是按规定流程对图像进行处理并输出结果。这种系统一般由普通数字电路搭成,主要用于平板材料的缺陷检测。

第二代机器人视觉系统一般由一台计算机,一个图像输入设备和结果输出硬件构成。视觉信息在机内以串行方式流动,有一定学习能力以适应各种新情况。

第三代机器人视觉系统是目前国际上正在开发使用的系统。采用高速图像处理芯片,并行算法,具有高度的智能和普通的适应性,能模拟人的高度视觉功能。

八、曲轴机械加工技术的发展历史?

20世纪70年代以前,发动机曲轴粗加工采用的加工方式是多刀车床车削曲轴主轴颈和连杆轴颈。采用这种方式加工精度较低、柔性很差、工序质量稳定性低,且容易产生较大的内部应力,难以达到合理的加工余量。在粗加工后一般需要进行去应力回火处理,释放应力。因此粗加工需要给后续精加工工序留较大的加工余量,以去除弯曲变形量。曲轴精加工采用的是普通磨削工艺,一般采用MQ8260曲轴磨床粗磨-半精磨-精磨-抛光。通常靠手工操作,加工质量不稳定,废品率较高。

20世纪70年代到80年代左右,曲轴粗加工采用CNC车削、CNC外铣加工,加工状况有所改善。精加工仍以普通磨床磨削工艺为主。

20世纪80年中期又出现了CNC内铣工艺,CNC内铣加工性能指标要高于CNC外铣加工,尤其是对于锻钢曲轴,内铣更有利于断屑。精加工工艺多采用半自动曲轴磨床,头架和尾座同步传动,加工精度有一定的提高。

1985年到1990年左右开发出了曲轴车拉、车-车拉工艺,该工艺具有精度高、效率高等优点,特别适合于平衡块侧面不需要加工且轴颈有沉割槽(包括轴向沉割槽)的曲轴,加工后曲轴可直接进行精磨,省去粗磨工序。曲轴精加工已少量采用数控磨床磨削工艺,尺寸的一致性得到改善。

20世纪90年代中期又开发出CNC高速外铣,它对平衡块侧面需要加工的曲轴,比CNC车削、CNC内铣、车-车拉的生产效率还要高。另外,CNC车-车拉工艺加工连杆轴颈要二道工序,CNC高速外铣只要一道工序就能完成,具有以下优点:切削速度高(可高达350m/min)、切削时间较短、工序循环时间较短、切削力较小、工件温升较低、刀具寿命高、换刀次数少、加工精度更高、柔性更好。所以CNC高速外铣将是曲轴主轴颈和连杆轴颈粗加工的发展方向。精加工使用数控磨床,采用静压主轴、静压导轨、静压进给丝杠(砂轮头架)和线性光栅闭环控制等控制装置,使各尺寸公差及形位公差得到可靠的保证,精加工还广泛使用数控砂带抛光机进行超精加工,经超精加工后的曲轴轴颈表面粗糙度至少提高一级精度。

20世纪90年代开发的CBN高速磨削。英国LANDIS公司生产的曲轴磨床,磨削速度高达120m/s,用扒皮法一次装夹从毛坯到精磨完毕,耗时仅几分钟的时间。这将会出现以磨代替其它粗加工工艺的新局面。

进入21世纪以后,复合加工工艺已进入曲轴制造业中。复合机床应具有工序集成功能,多种加工集成功能。奥地利WFL公司生产的卧式车铣复合加工中心(图3为M40G型)能在曲轴硬化前“一次装夹,全部加工”,加工后的曲轴可直接转入精加工工序;曲轴精加工方面,也出现了工序集成的CBN数控磨床,即一次装夹磨削全部曲轴主轴颈和连杆轴颈(摆动跟踪磨削)。

由以上演变可以看出,曲轴的加工工艺正向着高速、高效、复合化方向发展。目前较为流行的粗加工工艺是主轴颈采用车-车拉工艺和高速外铣,连杆颈采用高速随动外铣,全部采用干式切削;精加工采用数控磨床加工,具有自动进给、自动修正砂轮、尺寸和圆度自动补偿、自动分度和两端电子同步驱动等功能。主轴颈和连杆颈可一次装夹全部磨削完毕;超精加工采用数控砂带抛光机,带尺寸控制装置。

典型曲轴加工先进装备性能简介 CNC高速随动外铣:现介绍一款型号为VDF315OM-4的高速随动外铣床的性能。该机床是德国BOEHRINGER公司专为汽车发动机曲轴设计制造的柔性数控铣床,该设备应用工件回转和铣刀进给伺服连动控制技术,可以一次装夹不改变曲轴回转中心随动跟踪铣削曲轴的连杆轴颈。采用一体化复合材料结构床身,工件两端电子同步旋转驱动,具有干式切削、加工精度高、切削效率高等特点;使用SIEMENS840DCNC控制系统,设备操作说明书在人机界面上,通过输入零件的基本参数即可自动生成加工程序,可以加工长度450~700mm、回转直径在380mm以内的各种曲轴,连杆轴颈直径误差为±0.02mm。

CNC车-车拉机床:该设备一次设定能完成所有同心圆的车削,并在同一台机床上完成车—车拉(车侧端面)加工,加工效率高,通过使用特殊卡盘和刀具系统还能实现柔性加工,且机床保养简便维护成本也较低,特别适用于平衡块侧面不需加工、轴颈有沉割槽的曲轴。其中拉削工艺可用高效的梳刀(图5)车削工艺代替,梳刀加工通常放到该工序的最后工步,通过微量的径向进给和纵向车削实现高速精加工。

曲轴止推面车滚专机:该设备用于对曲轴止推面精车滚压加工,并具有以下技术特点:滚压抛光止推面并在线测量、滚压抛光代替磨削加工、可同时进行车削加工、在刀盘上装有滚压抛光装置、可获得更高精度。目前性能较好的设备有德国赫根塞特(HEGENSCHEID)公司的曲轴止推面车滚专机等。

CNC曲轴磨床:以德国埃尔温勇克机器制造有限公司(JUNKER)的摆动跟踪系列磨床为例,该设备采用了用于高速加工的CBN砂轮和使用油冷却曲轴的组合,适用于加工汽车发动机曲轴,质量可靠。主要性能有:在加工过程中检测并修正轴颈圆度和尺寸;带有“学习功能”的控制系统,附加对圆度偏差和干扰量的自动补偿,可进行补偿的干扰量是:温度,机械及动力影响,磨削余量的变化,材料以及金相结构的变化,砂轮的可切削性,机床的磨损状况;磨削主轴颈和连杆轴颈一次装夹,理论上的偏差为零;切入式磨削及摆动式磨削;对“敏感工件”的支撑,在主轴上采用自动对中心的三点式中心架;CNC控制的冷却剂供给保障了磨削区域的持久用量;采用静压圆型导轨,无爬行现象,确保持久的高精确度(X轴导轨,进给丝杠,止推轴承);减震抗扭转床身,使用矿物的合成材料浇注而成,具有良好的吸震抗弯功能;砂轮轴适用于高达140m/s的磨削。

从以上所介绍的几种先进设备可以看出一个共同点,就是高速高效柔性化,适合于当今产品多品种、小批量的发展趋势。由于曲轴加工不同于普通机械加工,许多工序必须使用专用刀具,如上面介绍的内铣、车-车拉和高速外铣,所使用的都是专用刀具,这些刀具的刀体制造复杂,价格也比较昂贵。如果产品变型要牵涉曲轴结构的变化,就导致必须使用新的刀体来加工曲轴,这就会影响产品开发周期和制造成本,最终导致产品缺乏竞争力。现在瓦尔特等刀具制造商已开发出柔性化的曲轴制造专用刀具—模块化刀具。大大缩短了产品开发周期,降低了制造成本。

曲轴敏捷柔性生产线(AFTL)方案探讨 目前国内轿车曲轴生产线多为高速柔性生产线FTL(FlexibleTransferLine),这种生产线的特点是不仅可以加工同系列曲轴,而且还可加工变型产品、换代产品和新产品,真正具备柔性意义。为进一步提高高速柔性生产线的生产效率,更快的适应巿场,FTL下一步发展是敏捷柔性生产线AFTL(AgileFlexibleTransferLine)。其主要目的是:

满足巿场变化的需求。不但满足当前产品的要求,还应考虙未来巿场需求。

满足生产方式的需求。能满足现代发动机“多品种、大中批量、高效率、低成本”的生产需求。

符合“精益生产”的原则。杜绝浪费,用最少投资、最大回报谋取利润。

由于发动机曲轴自身结构的特殊性,笔者认为曲轴AFTL应具备以下特点:由高速加工中心和高效专用机床(含少量组合机床)组成。按工艺流程排列机床并由自动输送装置连接,采用柔性夹具和高效专用刀具生产。为防止关键工序设备故障造成全线停产,可增设平行设备增补,亦能满足大批量生产的需要。以下是其工艺流程(仅金属加工部分):

铣端面、定总长、钻质量中心孔、车大小端外圆→铣主轴颈及轴肩→铣连杆颈及轴肩→车拉主轴颈及沉槽→车拉连杆颈及沉槽→枪钻油孔→清洗→圆角滚压→法兰钻孔攻丝→精磨主轴颈(CBN)→精磨连杆颈(CBN)→斜切磨小端→斜切磨法兰端→车滚止推面、铣键槽→动平衡→砂带抛光主轴、连杆及法兰外径→清洗、冷却→检测分类。

对上述工艺流程有几个问题探讨如下: 曲轴质量中心孔和几何中心孔的选用。

毛坯质量好,加工余量小且加工余量分布均匀。这时曲轴的质量中心孔与几何中心孔基本重合,则不必花费较高的经费购置质量定心设备而直接钻几何中心孔。,li>毛坯质量较差,加工余量大且加工余量分布不均匀,要优先选用质量中心孔。因初始不平衡量较大,如果钻几何中心孔,质量分布不均匀,转动惯量较大,损坏后续加工设备精度。再者,采用几何中心孔,在进行动平衡时,初始不平衡量可能超出平衡机要求而无法平衡。在这种情况下应优先选用质量定心机。

曲轴粗加工机床的合理选用 选用原则 先进的金属加工设备在曲轴制造中的重要性毋庸置疑,它能够可靠地保证尺寸精度和一致性,适应生产节拍的要求,提高整体工艺水平。但不能采取“拿来主义”,也并不是设备越先进越好,应符合以下三个原则:1)符合工艺性原则,结合产品结构,能满足尺寸精度和一致性的要求。2)符合经济性原则,采用招标的形式降低成本。3)符合设备管理和维修性原则,考察设备生产商售后服务质量,设备易损件是否能够随时采购等。

合理组合 国内曲轴制造企业对引进设备存在一些误区,比如认为设备越先进、昂贵越好。其实如果使用不当,先进设备起不到应有的作用,造成浪费。下面以CNC高速外铣、CNC内铣、CNC车-车拉的合理组合为例来介绍。

曲轴平衡块侧面需加工,主轴颈加工应优先选用CNC内铣或CNC高速外铣,连杆颈的加工用CNC高速外铣。如果毛坯是锻钢毛坯,CNC内铣更有利于断屑。不宜采用CNC车-车拉,由于平衡块侧面是断续车削,曲轴转速又很高(约1000r/m),崩刀现象很严重。

曲轴平衡块侧面不需加工,主轴颈加工选用CNC车-车拉比较合理,加工精度高。由于连杆颈轴线不在一条中心线上,如六拐曲轴,用车-车拉加工就有一些麻烦,CNC高速外铣就比较合理。

轴颈有沉割槽的曲轴,此时CNC车-车拉体现出其优越性,若轴向有沉割槽,CNC高速外铣和CNC内铣不能加工,而车-车拉能加工。

以上设备应采用独立双刀盘、模块化刀具系统等实现柔性化加工。

曲轴圆角滚压强化 曲轴的圆角滚压强化,主要是为了提高曲轴的疲劳强度。据统计资料表明,球铁曲轴经圆角滚压后寿命可提高120-230%;锻钢曲轴经圆角滚压后寿命可提高70-130%。因此这种强化手段受到各曲轴生产厂家的高度重视。目前国外轿车曲轴几乎全部采用滚压强化工艺。采用这种设备应注意柔性化,以适应不同产品的加工。

曲轴砂带抛光 采用砂带抛光可同时抛光主轴颈、连杆颈、法兰、圆角及至推面,由曲轴轴向窜动实现圆角及止推面的抛光。抛光后的表面粗糙度至少提高一级精度以上。为实现曲轴多品种、变型产品的加工,可采用独立抛光头、分多工步加工实现柔性化。

曲轴的清洗 曲轴通常采用二次清洗,第一次清洗安排在枪钻油孔之后,去除油孔内的铁屑和曲轴表面的润滑油,为下道工序提供清洁的半成品。第二次清洗安排在砂带抛光之后,选用定点定位专用清洗机对油孔、法兰螺孔等用专用喷嘴清洗。

曲轴的精加工 曲轴精磨主轴颈和精磨连杆颈工序应选用单砂轮、独立双砂轮CBN数控磨床,不易选用多砂轮一体化磨床,虽效率高,但不能适应多品种柔性化需要。

九、国内外机器人发展现状

国内外机器人发展现状

在当今高科技时代,机器人技术被认为是推动社会和经济发展的关键领域之一。无论是在工业自动化、医疗保健还是军事领域,机器人的应用都在不断扩大。本文将探讨国内外机器人发展的现状,并分析其对社会和经济的影响。

首先,我们来看看国外机器人发展的情况。美国、日本和德国等发达国家一直处于机器人技术的前沿。这些国家在机器人研发和应用方面投入巨大资源,取得了许多令人瞩目的成果。例如,美国的波士顿动力公司研发的Atlas机器人在行走、跳跃等动作上表现出色,被广泛应用于工业和救援领域。日本的本田公司则致力于开发人形机器人,用于照料老人和提供服务。德国的ABB公司则在工业机器人领域取得了重大突破,提高了生产效率和产品质量。

与此同时,中国也在机器人技术领域取得了长足的进展。中国政府将机器人产业列为国家战略,大力支持机器人研发和应用。中国的机器人企业不断涌现,例如国内的大疆创新公司在无人机技术领域享有盛誉。中国还投资建设了一系列机器人研发中心和实验室,吸引了大量优秀的科学家和工程师。中国的机器人应用领域也在不断扩大,包括工业制造、医疗卫生、农业等领域。

机器人发展对社会和经济的影响

机器人发展对社会和经济的影响是深远的。首先,机器人的应用可以提高生产效率和质量。在工业制造领域,机器人可以完成繁重、危险和重复性的工作,解放人力资源,提高生产效率。机器人的精确度和稳定性也能够提高产品的质量,减少产品缺陷率。

其次,机器人的应用可以改善劳动条件和人们的生活质量。在工业生产中使用机器人可以减少工人的劳动强度,降低事故风险,创造更安全、舒适的工作环境。在医疗领域,机器人的应用可以帮助医生进行精准的手术和诊断,提高治疗效果,拯救更多生命。在家庭服务领域,机器人可以提供日常照料和支持,为老年人和残疾人提供更好的生活条件。

然而,机器人发展也带来了一些挑战和问题。首先,机器人技术的发展可能导致部分职业岗位的消失。一些简单、重复性的工作可能被机器人取代,引发失业问题。不过,随着机器人技术的不断发展,也会创造出新的就业机会,例如机器人的设计、制造和维护。

其次,机器人的安全性和道德问题也需要重视。在实施自动化过程中,要确保机器人的安全性,避免对人和环境造成伤害。此外,机器人在某些特定领域的应用也引发了一些道德问题。例如,在军事领域使用机器人进行战争和杀伤行动引发了关于伦理和道义的争议。

机器人发展的前景与发展策略

从国内外机器人发展的现状来看,机器人技术将在未来继续取得更大的突破和应用。随着人工智能、大数据和云计算等技术的不断进步,机器人的智能化、自主化将得到进一步提升。机器人将更加适应复杂、多样化的任务需求,并与人类紧密合作,共同推动社会和经济的进步。

为了推动机器人技术的发展,国内外需要制定相应的发展策略。首先,需要加大研发投入,培养更多的科研人才。在相关领域设立研究机构和实验室,开展前沿技术的研究。其次,需要加强国际合作,共享资源和成果。通过合作,可以快速推进机器人技术的发展,实现共赢。最后,需要建立机器人的规范和标准,确保机器人的安全性和可靠性,解决相关的法律和伦理问题。

总之,机器人技术的发展正在改变着我们的生活和工作方式。国内外机器人发展的现状显示出了巨大的潜力和前景。未来,机器人将成为人类的得力助手,用智慧和创新为社会发展做出更大的贡献。

十、20世纪机器人发展历史?

机器人的发展要看从什么方面来说,如果是从发展的阶段来说,可以分为3个:

第一阶段的机器人只有“手”, 以固定程序工作, 不具有外界信息的反馈能力;

第二阶段的机器人具有对外界信息的反馈能力, 即有了感觉, 如力觉、触觉、视觉等;

第三阶段, 即所谓“智能机器人”阶段,这一阶段的机器人已经具有了自主性,有自行学习、推理、决策、 规划等能力。

如果从更新换代来看,主要是有3个:第一代是可编程机器人,这类机器人一般可以根据操作员所编的程序,完成一些简单的重复性操作。这一带机器人从20世纪60年代后半期开始投入使用,目前他在工业界得到了广泛应用。

第二代是感知机器人,即自适应机器人,它是在第一代机器人的基础上发展起来的,具有不同程度的“感知”能力。这类机器人在工业界已有应用。

第三代机器人将具有识别、推理、规划和学习等智能机制,它可以把感知和行动智能化结合起来,因此能在非特定的环境下作业,故称之为智能机器人。目前,这类机器人处于试验阶段,将向实用化方向发展。

Top